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ABSTRACT

The Feinberg-Galanin method for heterogeneous reactors is for-

mulated by using a two-group model rather than an age kernel. This

treatment is then extended to take into account secondary effects, such

as fast fission and thermalization of neutrons inside a rod which may

contain moderator. The use of a single coefficient in a Feinberg-

Galanin approach allows one to relate the source and sink strength of

the fuel element to the thermal flux only. By defining a set of four

coefficients, it is possible to connect the strengths of thermal- and

fast-neutron sources and sinks to both thermal and fast fluxes. A

method is presented for calculation of these four coefficients, al, 131,

a_, and/92.

I. INTRODUCTION

The theory of heterogeneous reactors was first devel-

oped with the homogeneous model by calculating the

criticality of equivalent homogeneous reactors. The actual
reactor is divided into cells whose shape is determined

by the fuel-element distribution. Using the Wigner-Seitz

unit-cell model, each cell is replaced by an equivalent

(usually cylindrical) cell whose nuclear parameters can

be calculated. The heterogeneous ceils are then replaced

in the reactor model by homogeneous regions having
these calculated nuclear characteristics.

Subsequently, Feinberg (Ref. 1) and Galanin (Ref. 2)

developed a heterogeneous method applicable to infinite-
moderator media. This method was extended to finite

media of rectangular shape by Meetz (Ref. 8) and to

those of cylindrical shape by Jonsson (Ref. 4).

Feinberg and Galanin consider each fuel rod as a

singularity. These singularities are considered as external
to the moderator and are treated as localized sources

and sinks. The properties of the rods are contained in a
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single constant -/, which relates the thermal net current

to the thermal flux at the surface of the fuel element; this

allows one to relate the strength of the thermal-neutron
sink at the rod to the thermal-neutron flux at its surface.

The singularity is then considered as a sink of thermal

neutrons and a source of fast neutrons. The strength of

the source is related to the strength of the sink through

the coefficient ,/, the average number of fission neutrons

produced per neutron absorbed in the rod. This coeffi-

cient may be different for each rod.

For reactors with a small number of solid rods, the

Feinberg-Galanin method is an improvement over the

homogeneous method. However, it is not completely

satisfactory for reactors which may have fuel elements

containing a significant amount of moderator. In such

reactors, fast neutrons can be produced in a fuel element

by fission, but slow neutrons can also be produced by a
slowing-down inside a fuel element. Neither of the two

methods noted above treats this kind of reactor properly;

the homogeneous method does not localize the singu-

larity, and the Feinberg-Galanin method neglects the

slowing-down inside the singularity.

In order to introduce these effects in a heterogeneous-

reactor calculation, the Feinberg-Calanin method is re-

constructed in a two-group model (Section II), after
which the additional source and sink effects in the fast

and thermal groups are introduced (Section III). Thus,

each fuel element is represented by:

(1) a source of fast neutrons (fission)

(2) a source of thermal neutrons (thermalization)

(:3) a sink of fast neutrons (radiative capture and fast
fission )

(4) a sink of thermal neutrons (thermal absorption)

The source and sink terms are related to each other by
two constants: 'Ta and _z, the average number of neutrons

produced per fast and thermal absorption, respectively,

in the fuel element; and by p, the probability that a

neutron slowing down inside the fuel element reaches

thermal energy.

The change introduced here with respect to the

Feinberg-Galanin method is that the sink terms are re-
lated to both the thermal and the fast fluxes at the surface

of the rod. These relationships necessitate the establish-

ment of four coefficients, which must be determined.

Section IV outlines a method of obtaining these coeffi-

cients for a simple fuel element.

Although the treatment here is for the case of fuel rods

only, the extension to control rods is straightforward.

In that case, the coefficients ,i are equal to zero.

Ih FEINBERG-GALANIN METHOD WITH TWO-GROUP MODEL

Consider an infinite moderating medium containing a
finite number of fuel elements. These fuel elements are

assumed to be cylinders of finite length and parallel to
each other, forming a core embedded in the moderator.

It is assumed either that the distance between these ele-

ments is large compared with their transverse dimensions,

or that the lattice is sufficiently symmetrical that the flux

near the elements possesses enough symmetry for con-
sideration of the elements as line sources. In order that

diffusion theory may be used in the moderator, the

further assumption is made that the distance between

two fuel elements is large compared with the diffusion

length.

Applying diffusion theory, one can write equations for
the overall fluxes:

- D1 w 41(p) + (ZR + Z,"')

= - (1)

- D2 v2ff2(p) + _ ff2(p)

IL.=-_
(2)

2
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where ff,(p) and ¢_(p) refer to the fast and thermal

fluxes, respectively, in the moderator; YR is the removal

cross section of the moderator; and N is the total num-
ber of elements.

On the right-hand sides of Eqs. 1 and 2 are the den-

sities of the different neutron sources of the system. It

may be seen that each fuel element is considered as a line

sink capturing Sk thermal neutrons per unit time and

unit length. The quantity Sk depends on the position

along the z axis of the fuel element, which is the reason

for introducing Sk (p) in Eqs. 1 and 2. Note that the
Direc delta functions used in the Equations are two-

dimensional delta functions, so that the product Sk (p) X

_(r- rk) is the sink density of the fuel element k at

point p.

The geometry of the fuel elements suggests the use of

cylindrical coordinates; thus, the variables in the differ-

ential equations are separated. Let

_(p) : _(r) _(z) (8)

_(z) _ cos Bzz (4)
91"

B_ = 2h + 2az (5)

where a,z is the reflector saving on one side along the z

axis, along which the reflector need not be infinite. The

term Sk (p), which is directly proportional to the flux,
can be written as

Sk (p) = Sk cos B_z

where Sk is now a constant to be determined for each

rod. Remaining are the two-dimensional equations:

/¢

_,(,-) : _ _s_s(_ - ,-_) (6)- v= ¢,(,-) + ,, 79-7_:,

pE,

where

_ 1 y_SkS(r- r_)
D2 k=l

_,(1)
2 _R -_ z-,a 2

D_

(7)

is)

.= D----?+ B_

In the fast-flux equation, the solution sought is of the
form:

N

_,(_) = _& ro(,, 1_ - _ I) (9)
k=l

which is the solution for a superposition of k line sources

located at different positions rk and satisfies the boundary
condition for an infinite-moderator medium.

One can easily find the coefficients Ak by making the

following assumption: The flux at a rod emplacement is

the sum of a symmetrical rapidly varying function due

to the rod itself and an unsymmetrical slowly varying

function due to all the other rods. In computing the de-

rivative about a rod, the derivative of the slowly varying

function is neglected when compared with the derivative

of the other function. The rapidly varying function at the
rod k is stated as

_ : A, ro(,, I,-,_ [)

In order to evaluate the coefficients Ak, the finite

radius b of the rod must now be considered. The num-

ber of fast neutrons leaving the surface of the rod per

unit length and time is given by

- D,_-_-2_rb = 2,,rbD, J,,A_K,(_,b) = _Sk (10)

where Sk is the number of thermal neutrons absorbed

per unit length and time at the center of rod k; then

Ak = 2.,rbD,_,Ka(K:b) (11)

The thermal constant 7, defined in Appendix A, is

expressed as

_ -2,,bid,.,) _ s, (12)

where q,z(rk) and ]_(r:) are the thermal flux and net cur-

rent (taken as positive when directed outward) at the

surface of fuel element k. The fast flux is thus expressed by

N

'_(") _bD,_,r,(,,,b) _(_) _(_'1_-_1)

The thermal equation (Eq. 7) is, then,

2¢

k=l

N

- _ _ _(_) 8(_-_)

where (14)

m = p D_ 2,_-b D, ,,: K,(,,b)

3
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Applying a Fourier transformation to Eq. 14, inverting

and integrating the result, one finds the following expres-
sion for the flux:

N

_(r) =_2(rk) H(Ir-r_l) (15)
k=l

where

n(lr-r_l) - m
K 2 --K 1

K 1

(16)

III. THE FOUR-COEFFICIENT METHOD

Considered here is the same assembly as the one

defined in Section II; now, however, the fuel elements are

allowed to have non-negligible slowing-down properties.

Each fuel element is replaced by:

(1) a sink of thermal neutrons

(2) a sink of fast neutrons due to absorption and
thermalization

(3) a source of fast neutrons due to fission

(4) a source of thermal neutrons due to thermalization
inside the rod

To write the balance equations, one relates the source

and sink strengths to the coefficients '7 and p.

A. The Neutron-Balance Equations

One writes the same equations as those used in Sec-

tion II; but S_1) and q(2) the fast and thermal neutron-o k ,

sink terms, now replace the one thermal-sink term:

/¢

(--DlV 2 + Ze + Za{1) ) _)l(p) ---- _2_] S_ 1) (p) 8(r--l*/_)

k:l

N

+ (,_1 -- 1) _"_ S_') (p) 8 (r-rk) (171
k=l

(-D2 v 2 + X_") ¢2 (0) : pXR¢_ (p)

N N

where

k:l k:l

(18)

is the number of neutrons which disappear from

the fast group per unit length and time at the
center of rod k.

(2)
is the number of thermal neutrons absorbed per
unit length and time at the center of rod k.

,/_ is the average number of fast neutrons produced

per fast absorption in rod k (may depend on k).

n2 is the average number of fast neutrons produced

per thermal absorption in rod k.

Note the extra terms in the right-hand side of these
Equations:

(1) Theterm (_- 1) S_ '_ (p) 8 (r-rk) accounts for

fast absorption and fast fission in rod k.

_(_) (p) 8(r-r_) accounts for ther-(2) The term p _k

malization in rod k; the overall resonance-escape

probability p is used as an approximation.

In these Equations, the z dependency can be removed by
letting

$(p) : ¢(r) cosB, z

Then,

/¢

(-v_ + _) _, (_) b-_,_ (r-,_)

+ Dt ____S_1)8(r-rk) (19)

( -v, + _:)¢_ (_) = _ x,, _,(r)
_2

where

1 P N

- E + E 8(,--,.,)
(20)

2 -- +B 2*
K1 Ox

_', (2)

2 -.,_ +B2,K 2 _--_

Dz

"B"

B, = Zh + _, (21)

It is now necessary to express -k_") and S_ 2) in terms
of the fluxes at the surface of each rod _k_(rk) and _b2(r,).

4
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Therefore, the coefficients are defined:

(I 1 is the probability that a fast neutron entering the

fuel element escapes from the fuel element as a
fast neutron.

is the probability that a fast neutron born from

fission inside the fuel element escapes from the
fuel element as a fast neutron.

(12

82

is the probability that a thermal neutron entering

the fuel element escapes from the fuel element.

is the probability that a neutron thermalized in-

side a fuel element escapes from the fuel element.

Using these coefficients, one can write:

Sf" Z_b/7(1-(1,)+ S_= 72 _ (1 - ill)

+ 7, o_-, (1 - fl,) (22)

s,_, = _bi; (1- (12)+ psi", (1 -fl_) (z_)

where ]- is the partial current going inward at the rod

surface, and b is the radius of the rod.

The fast and thermal net currents can be expressed by

2.rb], = 2,rb (/_ - j_) = n2S_ _) r, + S__) (';, fl_ - 1)

(24)

and, from diffusion theory,

i_ + i; = -_'(_)
2 (_)

il + i; = __=(r_) (27)
2

where the i's and ,/,'s denote the partial currents and fluxes
at the outside surface of a rod.

Note that, because of the assumption of symmetry

made at the beginning of Section II, the flux at the

surface of a rod is independent of the azimuthal angle.

With the six linear relationships stated in Eqs. 22-27,

one can find the S_'s in terms of the _b's:

S_ a_ = a_ _l(rk) + bx _2(rk) (28)

sY' -- a=¢_(r,) + b__1(_) (_.9)

where

ai = _b (1 - (1,1(1 + (12)
M

(1 - (12)(8/L - 2 - (1,/3,)
b, = - ,rb n2 M

aa = 7rb (1 - (1a)[1 -I- -q_(gfl_ -- 2) + (1_(1 -- r/_fl,)]
M

(1 - (11) (Si_9 -- 2 -- (124_2)

bz = - =b p M

M = [1 + v,(SB, - 2) + a,(1 -- v,/3,)] (1 + (1_)

- p_(sp_ - 2 - a2/_2)(sfl, - 9.- (1_,)
(so)

Thus, the differential equations (Eqs. 19 and 20)become

]9

(-V'+_z,)_,(r)---__ (_,k)8(r--rk)= (81)

(- v= + ,_ ) 4,_(r) = o-_7:e__,(,')

7¢=1

where

1

(_1_) = _-T{_,(,_) [_/,= + (_, - 1)a,]

+ _a(r_) [n_az + (7, -- 1) b,]} (88)

(_)

B. Solution of the Balance Equations;

Criticality Condition

For an infinite moderator, a solution of Eq. 31 is

_t

_=1

To compute A_, one again neglects, in the derivative of
the flux at a rod k, the derivative of the flux due to the

other rods when compared with the derivative of the

flux due to the rod k. The current at the boundary of the

k element is computed in the same manner as that used

in Section II, with the result:

A, = 2,rb,qK,(,lb)

where

1

5
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Then,

?¢

¢_(,-) = v _ (¢l,)r0(Kllr - r_t)
k=l

(88)

By substitution into Eq. 32,

/¢ /¢

k=l

(89)

As in Section II, a Fourier-transform procedure is used to solve this Equation, resulting in

ff2(r)-- Dz x; --_ k=,

1 z¢
+_- _(_,) Ko(.., 1_- _kl)

k=l

(40)

To obtain the criticality condition, one computes from Eqs. 38 and 39 the thermal and fast fluxes
at the surface of each rod:

= /7 _ (_bl(rk) [_/zb2 4- (r/, -- 1)al] 4- _b2(rk) [7/,_,, -}- iv/, -- 1)bx]} Ko (.,Ir_ - rkl)

(41)

ERF 1 z¢

+ _._(r_) [,_ + (_, - 1)bd) (to (K,/_. - _1) - Ko(._ I_. - "_l))

+ _1 D--__:,1_ (q_x(rk) [pa, - bz] + _2(rk) [pb, - ao]} K0(Kz Irm -- rk[) (42)

The result is a system of 2N linear homogeneous equations whose 2N unknowns are the q,_(rk)

and qSdr_ ). Non-trivial solutions exist only if _x -- 0 (or, the determinant of the system is zero). The
criticality condition is that the 2N-order determinant ,_ must vanish.

In practice, use can be made of symmetrically situated fuel elements having the same surface

flux q_(rk), and the number of unknowns can thus be considerably reduced. Most often, the order
of the determinant is smaller than 2N.

6
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IV. CALCULATION OF THE FOUR COEFFICIENTS

The four coefficients alfl_a2fl2, introduced in Section

III, depend on the nuclear properties and geometrical

configuration of the fuel element. Each fuel element, if

different from the others, can have a different set of these

coefficients. Considered here is a simple model of a fuel

element, accompanied by a method of obtaining these
coefficients.

The element is composed of two concentric cylindrical

regions. The inner region contains moderating material

(Ea < Es), and the outer region contains fuel (E_ __ E,).

The cross section of the fuel element is shown in Fig. 1,

71"2

7/" 3

7/"4

is the probability that a neutron coming from

outside goes through the fuel shell only and

escapes from the fuel element without a collision.

is the probability that a neutron coming from
outside reaches the inner moderator without a

collision in the fuel.

is the probability that a fast neutron (born in

the fuel annulus) entering the inner moderator
does not thermalize inside the moderator.

is the probability that a fast neutron (born out-

side the fuel annulus) entering the moderator
does not thermalize inside the moderator.

is the probability that a thermal neutron escapes
the inner moderator.

These probabilities (except ,r3, _, and ,r, ) must be de-
fined for both fast and thermal neutrons. In general,

accurate calculation of these transmission probabilities

is quite difficult and could be the subject of a separate

study. For the present purposes, it was considered suf-

ficient to make rough calculations utilizing rather gross

simplifying assumptions. These assumptions and the cal-

culations are outlined in Appendix B. The probabilities

are defined graphically in Fig. 2.

The following analysis shows how the detailed trans-

mission probabilities are combined to give the four coeffi-
cients desired.

Fig. 1. Cross section of fuel rod containing moderator

First, a few probabilities are defined which will be

useful in obtaining these coefficients:

P1 is the probability that a neutron coming from

the inner moderator goes through the fuel shell

without making any collision.

P2 is the probability that a neutron escapes from

the fuel element after a scattering collision in
the fuel.

P3 is the probability that a neutron enters the inner

moderator after a scattering collision in the fuel.

A. The Coefficient (x,: Probability That a Fast

Neutron Entering the Fuel Element

Escapes as a Fast Neutron

Referring to Fig. 2, assume that S fast neutrons enter

the fuel dement per unit time and per unit length, and
that x of these neutrons, after entering the inner modera-

tor, leave it again as fast neutrons. Hence,

[S(1 - r_ -,_2) + x(1 - P_)] o,

neutrons make at least one scattering collision in the fuel,

whereas

[S(1 -- _-, - _r2) + x(l - el)] _, (1 - P: - Pa) ,o

7
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12" I

Fig. 2. Escape and transmission probabilities
in fuel model

make two scattering collisions in the fuel, and so on.

Here, o_= Z+/ET. The total number of scattering colli-

sions these neutrons make in the fuel is (by summation)

IS(1 - _rl - _r2) + x(1 - P1)] OJ

1- (1-e.,-P3)co

Thus, the number of escaping neutrons is

S_l = S_-,+ [S(1-_,--_-2) +x(1-P1)] O,p..,+xr_
1- (1--P..-e3),,

(43)

and the number of neutrons entering the inner moderator
is

-= Srr: + IS(1 - 7rl - _'z) ÷ x(I_sP,)] o,
_r" 1 --G --- 7'='--- _P.-j]w P+

(44)

Solving the two previous Equations {or at gives

(1 - ,_t - _r.,)coP2

1-(1-P_-P_)o,

(e_ + ele_ - e,)_ + el
1 -(1 -P2- Pa)o,

(45)

where

f

E 1 _- ,tr3 1 -- (1 -- e_ -- Pa),o -- (1 -- P1),,,Par_

(46)

B. The Coefficient _,: Probability That a Fast

Neutron Born From Fission Inside the Fuel

Element Escapes From the Fuel Element

as a Fast Neutron

Assume that S neutrons are born from fission in the

fuel element per unit length and time, and that x of

these, after entering the inner moderator, leave it again

as fast neutrons. Then,

[S(1 - P2 - P_) + x(1 - P_)]o,

make at least one scattering collision in the fuel. The

total number of scattering collisions these neutrons make
in the fuel is

IS(1 - e_ - e_) + x(1 - e,)]o,

1- (1-P_-e_)_o

Thus,

[s(1 - P=- P+)+ x(1 - el)]_e=Sill SP_ +
1 -- (1 -- Pz - Pa)(O + xP,

(47)

of these neutrons escape, whereas

x SPa + [S(1-P.,-Pa) +x(1-P_)],op3
77:- 1- (1-P=-ea)o,

neutrons enter the inner moderator. Hence,

(_ - e_ - e_)_,e2
fll= P_ +

1-- (1--Pz--Pa),_

P37T3

+

(48)

1 - (1 - e,+ - P:+)<o - (1 - et),oe+,,,-+

× Pt + ,,,(Pz + P1Pa - P=) (49)
1-- (1-P=-Pa)_,

C. The Coefficient %: Probability That a Thermal

Neutron Entering the Fuel Element

Escapes From the Fuel Element

One can use here the same procedure as for _,, where

m replaces 7r;. This yields

(1 - ,,.,- ,_=),_v_
Ct2=,r, + i- (1-P2-Pa)_o

(ea -_- ViVa -- ex)oJ + et (50)

8
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_ - (1 - P_ - P_),o_ + (1 - _-_ - _.,),oe_

1 - (1 - P2 - P3),o -- (I - P1)_P_,_,

(51)

D. The Coefficient _2: Probability That a Thermal
Neutron Thermalized in the Fuel Element

Escapes From the Fuel Element

Assume that S neutrons are thermalized in the element

per unit length and time, and that x of these, after enter-

ing the fuel, return into the inner moderator and sub-

sequently escape again. Then, (S + x) (1 - P1)o, neu-

trons make at least one scattering collision in the fuel.

The total number of scattering collisions these neutrons

make in the fuel is

(S + x) (1 - Pl)(o

I-- (1-P_-- P3)o

Thus,

Sflz----(S+x) P_ ÷ 1(-S-+x)(1-P_-_'3);7o(1- Pz -- Pz

neutrons escape from the rod, and

x _ (S+x)(1-e,)_
7/'4 1- (1-P2-P_)o,

P3

neutrons re-enter the inner moderator. The result is

P_ + _o(Pz + P1P3 - P1)
Bz = 1 -- (1 - P_ - P_),o - (1 -- e_),oe_.,

(52)

(53)

(54)
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V. CONCLUSIONS

This development of the heterogeneous method, using

the four-coefficient and two-group approach, extends the

area of application of the method to include a greater

variety of elements, with no expected decrease in the

order of accuracy. The same characteristics are present

as in the single-coefficient technique; the increased com-

plexity is achieved at the cost of increased computation
time.

The size of the criticality determinant is twice that of

the same determinant in the single-coefficient case. It is

therefore advisable, before using this technique on a

complex problem, to examine the array for all possible

symmetries. In a regular hexagonal lattice, for example,

reduction of the magnitude of the determinant by a fac-

tor of 12 is possible.

As presented, the calculation of the individual trans-

mission probabilities is a separate problem and can be

performed to any order of precision and complexity re-

quired. Muhigroup-ceU theory or Monte Carlo methods

could be utilized if necessary, rather than the simple

model presented here.

The flux distribution in the moderator can be obtained

from Eqs. 38 and 40. These Equations include the terms

(4,1k) and (4,_k), defined in Eqs. 33 and 34. They depend

on 4,1(rk) and 4,2(rk), the fluxes at the surface of each

fuel element. The latter are solutions of the homogeneous

linear equations (Eqs. 41 and 42), whose determinant has

been made zero. Hence, the solution is not unique. A

value for one 4,(rk) must be arbitrarily chosen. By sub-

stituting this value in Eqs. 41 and 42, one gets a system

of linear non-homogeneous equations. One of these equa-

tions is redundant, because one more equation than un-

knowns remains. This non-homogeneous system can be

solved by calculating determinants of order 2N - 1, at

most.

A program has been drawn up for the IBM 7090 com-

puter which will accomplish both calculations of the
coefficients and solution of the determinants.

Further improvements can be made in the four-coeffi-

cient method. As was pointed out above, the resonances

in the fuel are taken into account by an overall resonance-

escape probability. Actually, since the resonance absorp-

tions take place mainly in the fuel, it might be worthwhile

to take into account the localization of this phenomenon.

This might be done, for instance, by introducing a third

group. One observes that the resonance absorptions occur

primarily in a relatively narrow range of energy for

uranium (between about 2 and 200 ev). Using the flux

distribution of this intermediate group, it is possible to
determine at what rate these neutrons flow into each

fuel element; also, it is possible to evolve a set of

cross sections for this group which includes resonance

properties.

The introduction of three groups requires the use of

nine coefficients, rather than the four employed in the
method outlined in Section III. These nine coefficients

relate the three sink terms to the three fluxes at the

surface of each fuel element and are equivalent to the

four coefficients defined in Eqs. 28 and 29.

The next improvement would be to consider a finite

medium, which is necessary for the case of thin reflectors.

For example, one might apply the refinements developed
in the present investigation to the Jonsson theory (Ref. 4).

It should not be forgotten that all these extra effects,

if taken into account, give rise to mathematical compli-
cations. For instance, the size of the determinant of the

criticality condition is tripled if three groups are used.

Hence, depending on the number of fuel elements to be

used, a compromise must be found between the degree

of complexity one can afford and the accuracy one
desires.

IO
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APPENDIX A

The Thermal Constant in Cylindrical Geometry

The thermal constant -/of a slug in a diffusing medium

is defined as the ratio of the net flow per unit time of

thermal neutrons into the slug to the value of the thermal

flux at the surface of the slug.

One way of obtaining an approximate value of this

constant is presented here, based on the following

assumptions:

( 1 ) The fuel rod consists of only one kind of material.

(2) The angular distribution of neutrons entering the

slug is isotropic (a first-order correction to this

approximation is performed here).

(3) The collision density is constant inside the fuel.

The thermal coefficient is related to the transmission

coefficient r, or the fraction of all neutrons incident upon

the surface of a lump which pass through the lump with-

out being absorbed:

_ j+
T

1-

- 2,,.b]

= ( - r
l-+i +

1-r
= ,_b 1 +------T- (Ad)

The terms I and _ are the net current and the flux,

respectively, at the surface of the rod;/+ and J- are the

partial currents at the same surface (the [+current going

outward); b is the radius of the slug, which is assumed

to be circular cylindrical. From this relationship, r is

computed, and X is deduced.

1. The Transmission Coefficient T

Among S neutrons entering the slug, some scatter,

some are absorbed, and some escape without undergoing

collisions. In paragraph 2 of this Appendix, a computa-

tion is made to determine kS, the number of neutrons

which escape without undergoing any collision. The

number of neutrons (1 - x) S, therefore, make at least
one collision each. Let

_r = the total macroscopic cross section of the material

inside the lump

X, = the macroscopic scattering cross section of the
same material

Thus, among the (1 - _,) S neutrons which make

collisions, ( 1 - X) (X,/Xr) S make scattering collisions.

In paragraph 3 of this Appendix, a computation method is

given for _, the probability that those neutrons which

have made scattering collisions then escape from the slug.

For that calculation, the two following assumptions are
made:

( 1 ) In the laboratory system, the scattering is isotropic

in the slug material. This assumption is acceptable

for heavy nuclei where _o = 2/8A. The average

cosine of the scattering angle becomes small when

compared to unity.

(2) The collision density in the slug is independent

of position.

Once _ is found, it is seen that

X, (1-_)S
(1 - X) -_-_r

of the incoming neutrons make at least two collisions

each, and that

(t - x) _--_ (1 - ¢) _--;S

neutrons make at least two scattering collisions each.

By the same procedure, it is evident that

(1-X)_ r (1 - _) _--;r S

neutrons make at least (n + I ) scattering collisions each,

and that, at each scattering generation, a fraction _ of the

scattering neutrons escapes from the slug.

Thus, the total number of neutrons which escape from

the slug after any number of collisions is expressed by

St=IX+ (1 - X) X-2-_¢' X_2( X,_x_ +(1-x)x, 1-¢)x,

_' (1 - ,)' (_-_r)' ]+ (1- x)_ ¢+-.. s

.(_i 1= X + Xr - (1 - ¢) X,.] S (A-9.)
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Hence, from Eq. A-l, the thermal constant is

(1 -)t) (Er -- X,)
r = 7rb (1 + x) (X, - X.) + 2¢E, (A-g)

2. The Probability k

The term X is the probability that a neutron entering

the slug will escape without making any collision. This

probability is equivalent to the transmission coefficient r

of a lump, computed in a first-flight approximation ( Ref. 5,

p. 247); however, the total cross section is used rather

than the absorption cross section.

a. Expression for the probability k. Needed here is the

angular distribution of the velocities of the thermal neu-

trons impinging upon the surface of the slug (Fig. A-l).

A first-order correction to the isotropic distribution is

given by the diffusion theory (Ref. 5, p. 171 ):

d d,= 'e4, [*(°14. +1 Ieos
where

(A-4)

is the cosine of the angle which the direction of
motion of the incident neutron makes with the

normal to the surface of the lump.

4, is the azimuth of the neutron direction about the
nornlal.

S2

$

¥

Fig. A-1. Projected path of neutron impinging on

surface of fuel slug

E_'_) is the scattering cross section of the diffusion
medium outside the lump.

fl is the angle between the direction of motion of

the incident neutron and the flux gradient.

In the present case, the flux gradient can be considered

as always oriented perpendicular to the surface of the

slug, neglecting the gross variation of the flux in the

reactor when compared with the local variation at the

slug boundary.

Hence, cos fl _ t_, and the neutron angular distribution is

where v_(0) can be approximated from a diffusion-

theory calculation.

For cylindrical geometry,

V_(0) =-¢(0) N _Ii(_b)
4,(0) ,(o)- ro(,,b)

(A-6)

where the slug-material constants are expressed by

Xl r)
Kz -- D_r) (A-7)

Hence,

]-(#, 4,) dvd¢ - #d_d4, 4,o(1 + g_)
4r (A-S)

where

,, I1(,,b)
g = X. "_) Io(.b) (A-0)

The integral, over all directions into the lump, of the

velocity distribution is

_--jo i,(1 + g_) d_ d4, = -4- 1 + (ADO)

The probability that a neutron will pass through a distance

of material without making any collision is e-X% where
Xr is the total cross section of the material, and s is the

path length shown in Fig. A-1.

The probability X can now be expressed as

f f -=..,,,)
x = i(t,, ,/,) e dr,d4, (A-11)

f f c ) d,d 
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foI f_. -X_s (_,#,)1 _ ( 1 + g_) dtt e d_

,r(X +-_) (A-12)

b. Calculation of the probability K in cylindrical geom-

etry from Eq. A-12. Referring to Fig. A-l, one makes

the change of variables defined by

/L --- cos/3 cos ,/

tan
tan ff --- sin'--'--ff

s : 2b cos/3
COS

(A-13)

The Jacobian of the transformation is

] _--- COS "/

Hence,

m

.(l+_g)

× {ss:
+gff"

.l a 0

-Zr2b ( cos/_/cos "_)d/3dcos fl cos 2 y e 7

COsZ/3 cos 3 Y e-Y.r2b(eos #/cos _) d/3d 7t

(A-14)

These integrals were evaluated numerically. Writing,

4

)L-- =(l+-_g2 ) (II +glz)

the values of I1 and Iz are plotted in Fig. A-2 as functions

of Zrb.

3. The Probability

The term ¢ is the probability that a neutron will escape

from the cylindrical slug after a scattering collision. It is

assumed that the scattering is homogeneous and isotropic

inside the slug. Hence, the system is equivalent to a

uniform-source material whose shape is a circular cylin-

0.100

0.010

0.001

I I I I I I I I I I I

,\ _-..z2

\\ "-<..
\

\
\

\

\\

._._L..__.I_I 1 I I I I I 1 t
0 2 4 6 8 I0

_T b

0.2 0.4 0.6 08 I0 1.2
I

_..T b

UPPER -
SCALE

,LOWER SCALI

I
12 14

Fig. A-2. Numerical values of !_and i_ vs fuel-rod

radius measured in mean free paths

der, and _ is the probability that a neutron born in this

source will escape.

This problem has been treated by Cohen and Estabrook

(Ref. 6), with the following result:

¢ - _ - 2 + 2X.b + irl(_:.b) te,(X.b)

+ 2Erbto(Erb)Ko(Erb)} (h-15)
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APPENDIX B

Approximate Method for Evaluating Neutron-Transmission Probabilities

In computing the transmission probabilities, the follow-
ing approximations are made:

( 1 ) The scattering is isotropie in the laboratory system.

(2) The angular distribution of neutrons impinging on

the outside surface of the fuel element is isotropic.

(:3) The collision density Zr4' in each region of the fuel

element is space-independent for both thermal and
fast neutrons.

1. The Probability P_

The term Pa designates the probability that a neutron

coming from the inner moderator goes through the fuel

shell without making any collision. It is assumed, as a first

approximation, that the angular distribution of the neu-

trons entering the moderator is uniform. The probability
that a neutron coming out of the element of area dA

(Fig. B-l) through a solid angle do about 0 and 4, goes

through the fuel shell without colliding is eXTso where Zr
is the total cross section of the fuel. With use of the

approximation above, it follows that the expression

l+_d_ = leos_ 0 cos 4"d4' dO
71"

is the probability that a neutron going through dA is in

a solid angle d.q about 0 and 4' (1/_- is a normalizing

factor). The product e-XTs, j_ d_ is the probability that

a neutron going through dA is in a solid angle df_ and

penetrates the fuel shell without a collision. The proba-

bility P1, the sum of these elementary probabilities over

the solid angIe, is given by

P,  ,U'f= - _o - o cos 2 0 cos 4' e -zTso d4,dO ( B-1 )

I

I

Fig. B-1. Three-dimensional path of neutron from inner

moderator passing through fuel shell
without collision

where, according to Fig. B-l,

So ----_ 1 -- _-i sin' 4' -- _- cos 4'

One may then write

(B-2)

2. The Probability P2

The probability that a neutron escapes from the fuel

element after a scattering collision in the fuel is denoted

by the term Pz. On the assumption that scattering is
isotropic in the fuel, and that the flux can be considered

as a constant inside the fuel, each volume element dv is

where

) r-' r-': ..Z ,R, ZT =,o -o eos_Oeos4"e_X,,_/co, o, [_/,_(__)2 .... ¢-_-,o.¢_ d4".dO (B-3)

14
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considered as a unit source. The probability that a neu-

tron coming from dv reaches an area dA on the outside

surface of the fuel element is the product of e_,s and

the fraction of solid angle through which dA is seen from

dr, or

dA cos 0 cos 4'
47r ,5'2

where s is the distance between dA and dv.

To obtain P2, this product is integrated over the volume

and divided by the source strength, which is v:

(B-4)

Note that there are two kinds of limits of integration,

depending on whether 4' is larger or smaller than a (Fig.

B-2) where ct = sin -1 (r/R). These two limits are

s2 = 2R cos 4'
cos 0

,,,)s3= cos4'-- _-sin 2

Therefore, the resulting expression is

where

2R

e_ = Zr_(R_-r _)

If" TI f_r/2 [Ir/2 (cos _b/cos e)I -_',B,X ----Jo J_:o c°s_Oe°s4'e-z'=R

(B-5)

"4 "

Fig. B-2. Three-dimensional paths of neutrons escaping
from fuel through outer wall

3. The Probability P_

The term P_ represents the probability that a neutron

enters the inner moderator after a scattering collision in
the fuel. Considered now is a small volume element dv

in the fuel and a small area dA on the surface of the

inner moderator. Applying the same reasoning as for P2,

the limit of integration (Fig. B-3) is now

,(,/ ,.. ,. )s_ -- 1 -- sin _ 4, -- cos 4'cos 0 _ "R

r'"/:W ,R, Nr =
" 0 =0

cos'Ocos4'e-Z_'"/°°'°'[ °°'¢ - 4(%) '-"'*] d4, d_

(B-r)
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FUEL

MODERATOR

\

Fig. B-3. Three-dimensional path of neutron escaping
from fuel to inner moderator

and the result of the integration is

(B-8)

where z (r/R, R, v-,t) is defined by Eq. B-3.

4. The Probability 7rl

The probability that a neutron coming from outside

goes through the fuel shell only and escapes from the fuel

element without a collision is represented by ,r_. Assume

an isotropic angular distribution for the velocities of the

neutrons coming into the fuel element,

i-(#,4) dded#= cos2 0cos6d4 'd0 (B-9)

The probability that a neutron traveling in a solid angle

df_ about 8 and 4' escapes is e-XT% provided that ,h > a ( see

Fig. B-2). Hence,

f f i do
"' ffi-(a,,)ae 

Since

then,

s2 = 2R cos_.______
cos 0

=1 -- -- I , R, Er
"/1"

where I (r/R, R, _2r) is defined by Eq. B-6.

(B-10)

5. The Probability 7r2

The term ,,_ denotes the probability that a neutron
coming from outside reaches the inner moderator without

a collision in the fuel. Using the same procedure as for
,rl, one obtains

where, according to Fig. B-2,

s3 -- cos ¢, -- sin2 4'cos 0 _-7-

Thorefore,

r_ = --W , R, Er
71"

where W (r/R, R, Er) is defined by Eq. B-7.

(B-11)

6. The Probability cr_

The term ,r3 expresses the probability that a fast neu-

tron entering the inner moderator does not thermalize

inside the moderator. Two cases are distinguished:

(1) The neutrons born inside the slug from fission.

These neutrons have a well known average leth-

argy, and one can have an idea of the average

number of scattering collisions which will make
these neutrons thermal.

(2) The fast neutrons which enter the slug from out-

side. These neutrons belong to the fast group, but

actually their lethargy is not well defined and is

spread between thermal and minimum lethargies.

16
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In case (1), knowing the probability that a neutron

escapes at each scattering collision, one can determine

the probability that a fast neutron escapes without be-

coming thermal. From the notations and results of Ap-

pendix A,

X -- the probability that a neutron going through the
moderator does not collide.

-- the probability that a neutron, after a scattering
collision in the moderator, escapes from the mod-

erator.

In this case, it can be assumed that E JEt = 1, because

only fast neutrons are considered.

Calling Na_g the average number of collisions which

make a fission neutron thermal, one obtains

,r3=X-t - (1-X)_+ (l-X) (1-¢)_+ "'"

-.- + (1 - x) (1 - t;)xi_,

¢) ,..,,r:_=X+ (1_X)_1_(1_ N-1
I -- (1 - t_)

----X+ (l--A) [1-- (1-- _)_¢;_g]

(Brig)

Turning to case (2), in the context of the two-group

model, one can say that at each scattering collision the

average probability that a fast neutron becomes thermal

is ER/E,, neglecting fast absorptions in the moderator.

Therefore, using the results of Appendix A,

_r's =X+ (l-X)(1--E___)

In these expressions,

4
X = --I (0, r, Er)

qr

,= 2_ls{-2+(21+_)',(l)K,(I)+Io(1)Kl(1)

-- Ix (1) ro (l) + 2llo (I) Ko (/)}

where

I _ _Tr

7. The Probability rr_

The probability that a thermal neutron escapes the

inner moderator is represented by m. This probability

accounts for the thermal absorption which takes place in

the moderator. Most of the time, it is very close to 1. The

term 7r4 is equivalent to the transmission coefficient of

the moderator slug. Hence, according to the results of

Appendix A,

,r, = 2, + (1 - X) E, _- _1, (B-14)
_r 1-- (1 ¢)_-;'T

where E,/ET of the moderator is used,

NOMENCLATURE

b

Bz

D1, Dz

h

Kn(_)

N

N1

radius of a fuel element

longitudinal buckling

fast and thermal diffusion constants

half-length of a fuel element

modified Bessel function of the second

kind and of the nth order

total number of fuel elements

average number of collisions to make
a fission neutron thermal

P

r

R

S(1) _{2)
k _k

resonance-escape probability

radius of the inner moderator cylinder
of a fission-electric cell element

two-dimensional vector: space variable

in transverse flux equations after

removal of the z dependency

outside radius of the fuel layer of a
fission-electric cell element

fast and thermal sink strengths of the

singularity
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NOMENCLATURE (Cant'd)

sin-' (r/R)

four coefficients connecting sink
strengths to fluxes

-/ thermal constant

A._ reflector savings on one end along the
z axis

e scale factor

probability that a neutron, after

colliding in the fuel shell, escapes

without making an extra collision

'1, average number of neutrons produced
per fast absorption in the fuel element

•t_ average number of neutrons produced

per thermal absorption in the fuel
element

x transverse component of the inverse of

diffusion length

A probability that a neutron going through
the fuel shell does not collide

Q

¢,(!-)

_l(r_),S_(,'_)

(P)

fast and thermal macroscopic

absorption cross sections of the

pertinent material

ER macroscopic removal cross section
of the moderator

_ macroscopic scattering cross section of
the pertinent material

Er macroscopic total cross section of the

pertinent material

fast flux at point r

thermal flux at point r

flux at the surface of the fuel element

three-dimensional vector: space

variable in overall flux equations

r transmission coefficient of a slug

co ratio of the scattering and total cross

sections in the pertinent material
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